

Advanced histology for spatial omics

Mei Zhang, PhD

Technical Director
Single Cell Technology Core
The Center for Single Cell Biology

Our Team

Xiaoxu Yang, MS
Research Assistant

Aliza Yousey, BS
Research Assistant

David Smith, PhD
Bioinformatics Scientist

Arta Seyedian, BSBioinformatics Scientist

Our Platforms

10x Genomics Chromium Controller

10x Genomics Chromium X

10x Genomics Chromium Connect

GeoMx Digital Spatial Profiler

Akoya PhenoCycler

Vizgen MERSCOPE

Milestones in spatial biology*

Introduction

"Form follows function" is a famous architecture saying that works exceptionally well for cellular biology. That is to say, the shapes of biological structures, from nucleic acids to large tissue structures, are dictated by the functions they need to carry out. And since cells reside within microenvironments, their functions are influenced by the network of cells surrounding them, sending and receiving messages.

Spatially resolved biology allows researchers to study cells in the context of their tissue microenvironment, enabling a fuller appreciation of cellular function. Recently, *Nature Methods* named spatially resolved transcriptomics its Method of the Year and highlighted the exciting future ahead researchers envision with additional technological improvements.

While spatial transcriptomics and proteomics methods have really blossomed in the last decade, researchers have been trying to understand cellular function in a true morphological context for a long time. In this infographic,* we journey through time to explore key applications of spatial profiling methods from the early proof-of-principle days to advances in resolution and multiplex detection.

*This infographic summarizes a non-exhaustive list of academic publications in the spatial biology space.

More in-depth reviews of the various spatial methods mentioned have been published by Asp et al.

Asp M, et al. Bioessays 42: e1900221 (2020).
 Marx V. Nat Methods 18: 9–14 (2021).

Start >

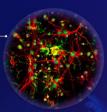
1941

Immunohistochemistry (IHC)

Coons et al. demonstrated the use of a fluorescently labeled antibody for visualizing protein targets in tissues3

3. Coons AH, et al. Proc Soc Exp Biol Med 47: 200-202 (1941).

RNA ISH


Singer et al. described an in situ hybridization method for mapping mRNA species while maintaining the morphology of analyzed cells⁵

5. Singer RH, et al. PNAS 79: 7331-7335, (1992).

Tyramide signal amplification-based multiplexed IHC

Wang et al. showed the application of TSA to immunofluorescence confocal laser microscopy for visualization of protein localization7

7. Wang G, et al. Methods 18: 459-64 (1999).

The Early Days

The Resolution Revolution

singly labeled oligonucleotide probes¹⁰ 10. Raj A, et al. Nat Methods 5: 877-879 (2008).

multiplex gene expression profiling using

Single molecule ISH (smISH)

Raj et al. demonstrated a method for

Ke et al. reported the application of sequencing for the multiplex detection of single mRNA molecules11

sequencing (ISS)

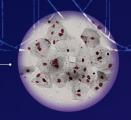
In situ

11. Ke R, et al. Nat Methods 10: 857-60 (2013).

Multiplexed ion beam imaging

Angelo et al. published a multiplexed IHC method to image proteins targets bound to metal-tagged antibodies via secondary ion mass spectrometry¹³

13. Angelo M, et al. Nat Med 20: 436-42 (2014).


The Resolution Revolution

The Multiplex Expansion

2010-2021

1990-2009

Next

1969

DNA in situ hybridization (ISH)

Pardue et al. reported a DNA-DNA hybridization method using radioactive labeling for detecting the cellular localization of DNA sequences4

4. Pardue ML. et al. PNAS 64: 600-604 (1969).

Laser capture microdissection

Emmert-Buck et al. published a method for visualizing and dissecting sections of cells microscopically from tissue samples for downstream profiling⁶

6. Emmert-Buck MR, et al. Science 274: 998-1001 (1996).

Branched DNA ISH

Player et al. presented the use of branched DNA signal amplification for detecting low-copy human papillomavirus DNA in subcellular compartments8

8. Player AN, et al. J Histochem Cytochem 49: 603-12 (2001).

1990-2009

Fluorescence ISS (FISSEQ)

Lee et al. described the use of fluorescence in situ RNA sequencing for highly multiplexed subcellular RNA analysis12

12. Lee JH, et al. Science 343: 1360-1363 (2014).

seqFISH

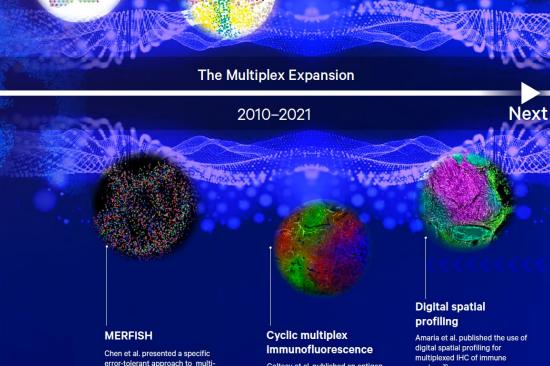
Lubeck et al. showed a multiplexed mRNA detection method employing a sequencing barcoding strategy14

14. Lubeck E, et al. Nat Methods 11: 360-361 (2014).

Next

Spatially encoded assays

Chee et al. demonstrated highly multiplexed spatial addressing of mRNA in fixed tissue samples15

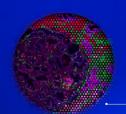

15. Chee MS, et al. Poster #1682T. ASHG Annual Meeting (2014).

Dirks et al. described the use of nucleic acid probes as signal amplifiers for biosensing applications⁹

9. Dirks RM and Pierce NA. PNAS 101: 15275-15278 (2004).

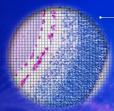
Spatial transcriptomics (ST) Stahl et al. demonstrated the Visium Spatial visualization of tissue sections Slide-seq and quantification of their **Gene Expression** Rodriques et al. reported transcriptomes using unique a method for inferring RNA Ji et al. showed the application of positional barcodes¹ localization via sequencing Visium spatial whole of RNA transferred from 17. Stahl PL, et al. Science 353: 78-82 (2016). transcriptome profiling to detail tissue sections¹⁹ the spatial organization of tumor cell populations21 19. Rodriques SG, et al. Science 363: 1463-1467 (2019). 21. Ji AL, et al. Cell 182: 497-514.e22 (2020). The Multiplex Expansion

error-tolerant approach to multiplexed single-molecule counting and mapping of mRNAs in single cells¹⁶

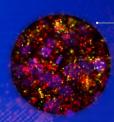

16. Chen HK. et al. Science 348: aaa6090 (2015).

Goltsey et al. published an antigen staining method for cytometric multiplexed imaging of protein targets in single cells and tissue

18. Goltsev Y, et al. Cell 174: 968-981 (2018).


markers²⁰

20. Amaria RN, et al. Nat Med 24: 1649-1654 (2018). Erratum in: Nat Med. 2018 Oct 25.


Visium Spatial Gene and **Protein Expression**

Will add highly multiplexed protein detection to Visium whole transcriptome profiling of tissue sections

Visium HD

Will bring single cell scale resolution to Visium spatial profiling

Xenium In Situ

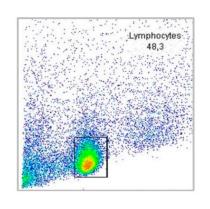
Will allow precise spatial mapping of RNA and protein with a subcellular readout

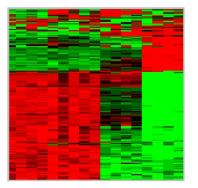
The Next Frontier

2022 and beyond

Trailblazing the future of spatial biology

Spatially resolved biology, including whole transcriptomic and targeted in situ methods, allows scientists to build a more complete view of cellular function in the tissue context. Visium from 10x Genomics is a spatial discovery platform that allows whole transcriptome profiling of fresh and formalin-fixed paraffin-embedded (FFPE) tissues. And Xenium, our new in situ platform, provides the highest spatial resolution with targeted gene and protein detection, enabling translational and, ultimately, clinical applications. See biology in new ways with the most comprehensive spatial resolution and scale.


©2022 10x Genomics, Inc. FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. LIT000167 - Rev A - Poster - Visium | FFPE Infographic

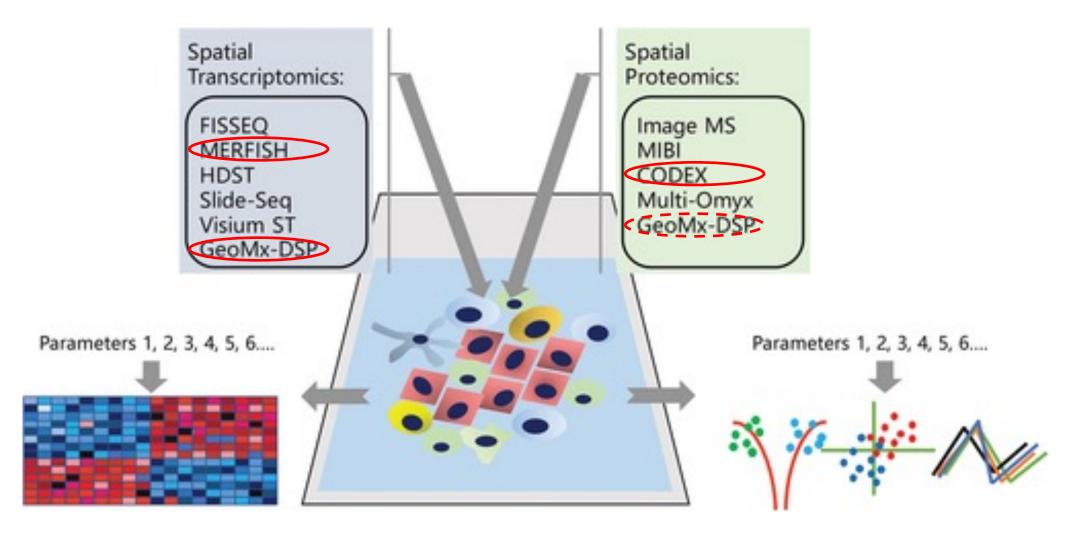

GENOMICS

Spatial Genomics

Genomics and Proteomics

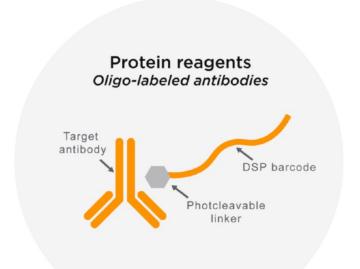
- Quantitative, limited visualization
- Tissue is destroyed
- Loss of tissue architecture to analyze cellular distribution (loss of spatial context)

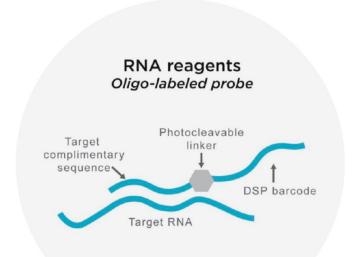
Pathology – Conventional IHC



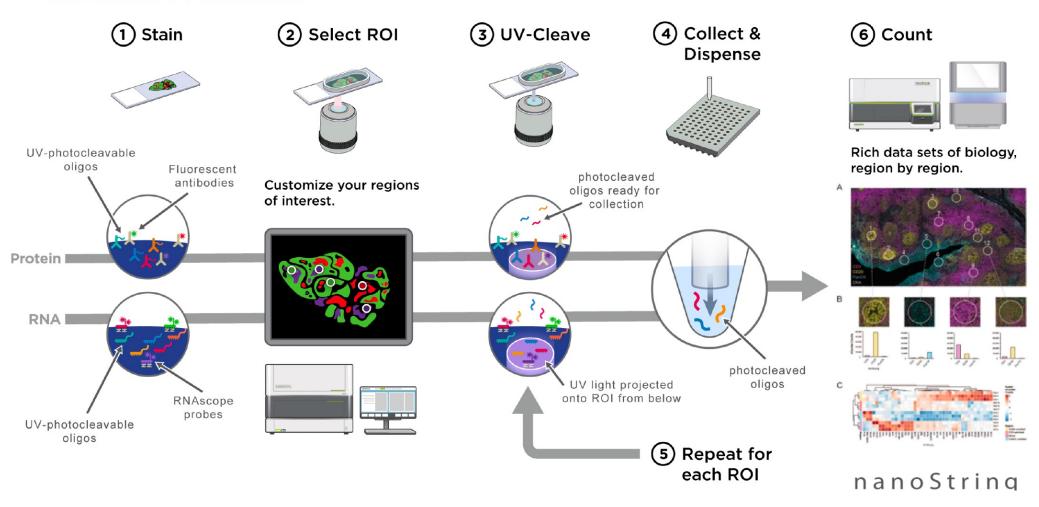
- Visual assessment remains the gold standard for diagnosis
- Results are limited, qualitative and subjective
- Complexity of the TME: not able to reveal

Spatial Genomics




Wang, N. et al, Biotechnol J, 2021 Sept

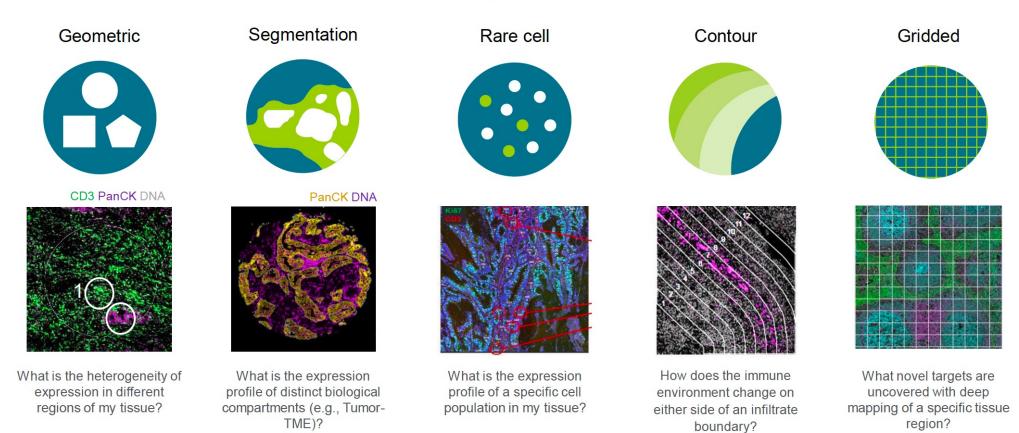
GeoMx Workflow


High-Plex Mixtures of Proprietary Reagents

GeoMx Workflow

Source: nanoString

Morphology Marker Guidelines


- up to 3 fluorescently labeled antibodies + 1 nuclear stain
- guide ROI selection and enable segmentation of specific compartments and cell types

ROI/AOI strategy

The biological questions ultimately help to define the right morphology markers to use and the best profiling selection strategy

ROI/AOI selection strategies

50-100 cells are required for each collection to get a good signal over background noise

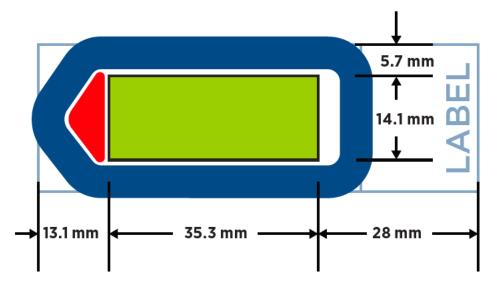
Source: nanoString

Supported Assays

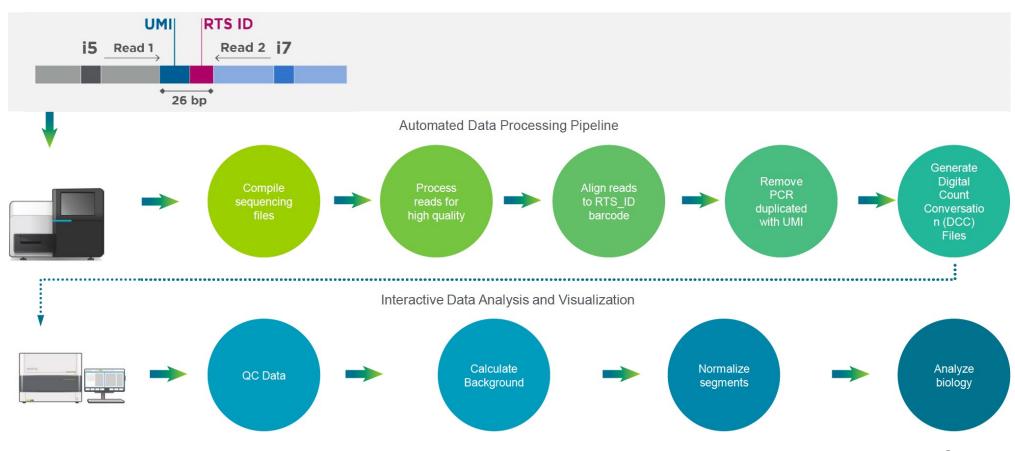
Whole Transcriptome Atlas with NGS readout

~18,000 human genes

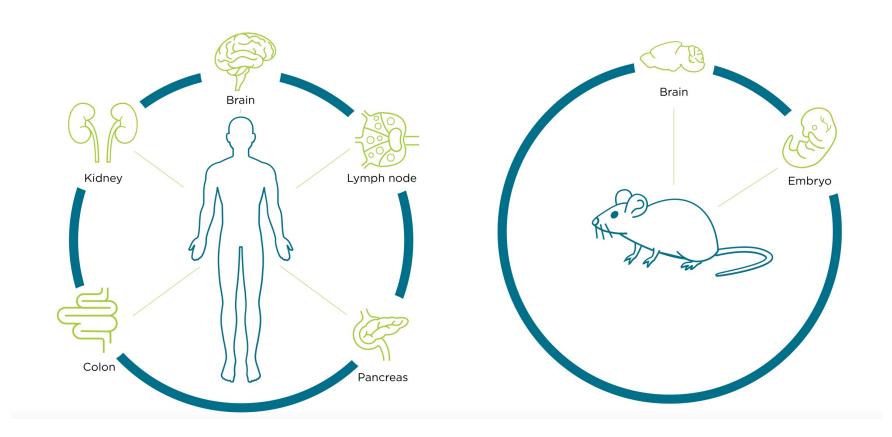
~20,000 mouse genes


Sample Requirements/slide prep

FFPE, Fresh or Fixed Frozen tissue

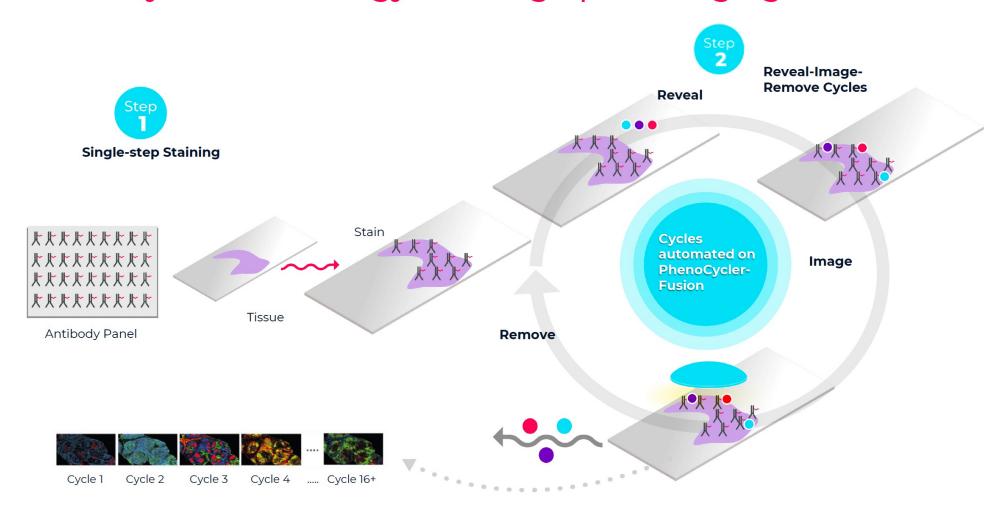

Selecting and Sectioning FFPE Samples

- Immediately after excision (up to 1hr), tissues (<0.5 cm in thickness) should be fixed in 10% NBF for 18 to 24 hours at room temperature
- Avoid acidic decalcification; EDTA-based decalcification or special decalcification solutions can be used
- For best results, do not use FFPE blocks that are greater than 10 years old
- Fisherbrand SuperFrost™ Plus slides or Apex BOND® slides
- 5 µm thickness
- Scan area: 35.3mm x 14.1mm
- Multiple sections can be mounted on the same slide, at least 2-3 mm apart
- Slides stored in a desiccator at 4°C yield quality results for up to 2 weeks.


Complete NGS data processing and analysis capabilities

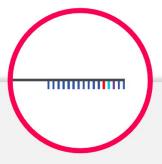
Source: nanoString

Spatial Organ Atlas

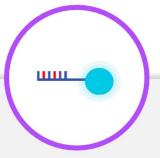

Source: nanoString

PhenoCycler Technology: Ultrahigh plex Imaging

PhenoCycler Reagents and Consumables


Staining Kit

PhenoCycler-Fusion Staining Kit for tissue staining and running iterative imaging (Processes 10 samples per kit)

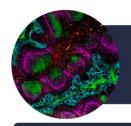

Antibodies

Conjugated antibodies for building antibody panels

Barcodes

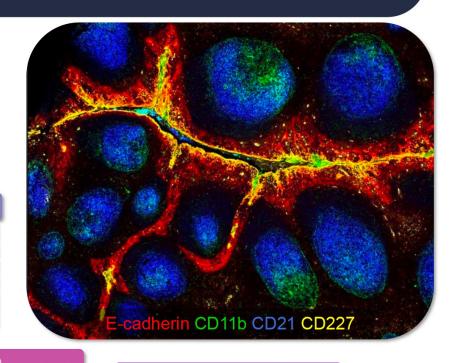
Modified oligonucleotides for easy conjugation of custom antibodies

Reporters


Fluorophore conjugated oligonucleotides for visualization of custom antibodies

Oligo conjugated antibodies

- Akoya inventoried antibodies ready to use
- Custom antibody conjugation and validation
- Akoya STEP panels available for purchase as a core panel and additional modules


Immune Profiling Modules for Human FFPE

STEP Core Panel (15)	
CD4*	Helper T cel
CD68*	Macrophage
CD20*	B cells
CD11c*	Dondritic co

Dendritic cells CD11c Cytotoxic T cells CD8* HLA-DR* APCs (MHC II) T cells CD3e* Activated T cells CD44* Immune cells CD45* MHCI HLA-A Monocytes CD14 Proliferating cells Ki67* Tumor cells Pan-CK* NK cells CD57 Memory T cells CD45RO*

Advanced Immune Module (6)	
CD163	M2 Macrophages
CD19	B-cells, FDCs
FoxP3	Regulatory T cells
Granzyme B	Activated T cells/NK cells
CD11b	Myeloid cells
CD21*	Dendritic cells, mature B cells, FDCs

Structural Module (7)	
E-cadherin*	Epithelial cells
SMA	Vascular, Fibroblasts, Smooth muscle
Vimentin	Cyto-structures
Collagen IV	Extracellular matrix
CD31*, CD34	Vascular structures
Podoplanin*	Lymphatics

COVID-19 Module (3)

SARS-CoV Spike, SARS-CoV Nucleocapsid, ACE2

Immune Activation Module (6)

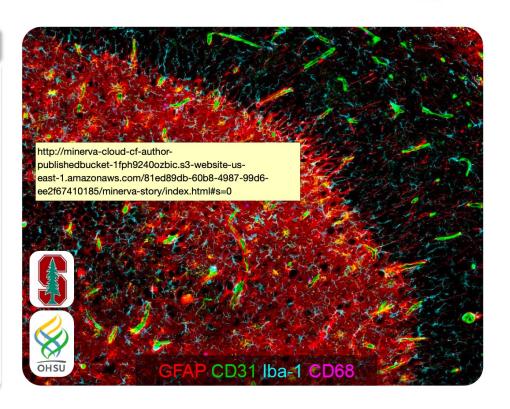
PD-1, LAG-3, TIM3, ICOS	Checkpoint receptor
PD-L1	Checkpoint ligand
	Multifunctional/Immune
IDO1	inhibitory

Breast Tissue Module (8)

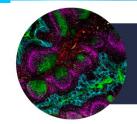
Tp63, Keratin 5, Keratin 8, Keratin 14*, Keratin 19, ER, PR, HER2

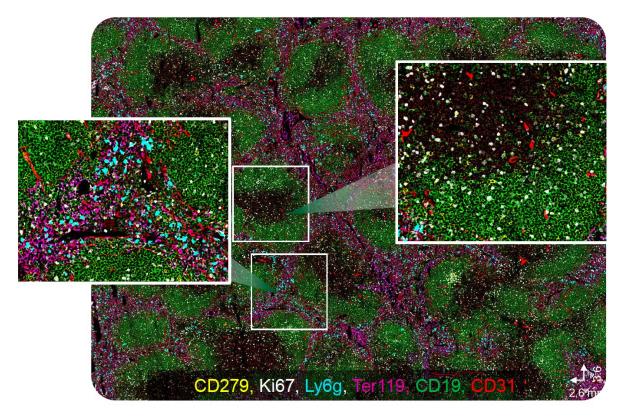
Neuroinflammation Module (12)

TMEM119	Microglia
AQP4	Blood-brain barrier
CD68*	Microglia, M1 Microglia
CD11c*	Microglia
CD163	M2 Microglia
Ki67*	Proliferating cells
PCNA*	Proliferating cells
Galectin-3*	Microglial activation
ApoE	Astrocytes/Microglia
β-Amyloid	β-amyloid peptide ($Aβ$)
Trem2	Microglia, Alzheimer's
iNOS	M1 microglia


Impound M	ماريام	(0)
Immune Mo	oaule	(\mathfrak{I})

CD8*	Cytotoxic T cells
HLA-DR*	APCs (MHC II)
CD3e*	T cells
CD44*	Activated T cells
CD45*	Immune cells
CD11b	Myeloid cells
CD4*	Helper T cells
CD14	Monocytes
HLA-A	MHCI

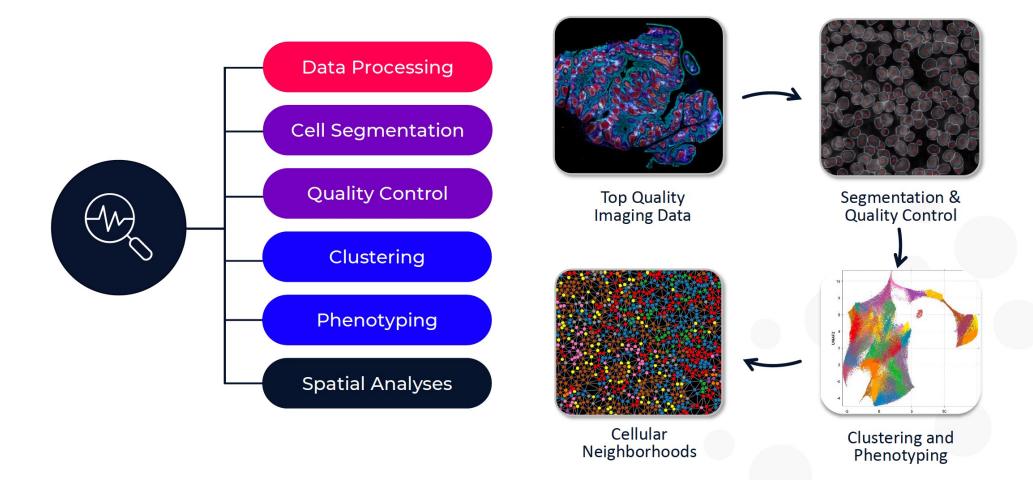



	Post-mitotic
NeuN	neurons
	Neurons
MAP-2	(dendrites)
H2A.X	Neurons
Neurofilament	Neurons
GFAP	Astrocytes
lba-1	Microglia
Olig-2	Oligodendrocytes
Vimentin	Astrocytes, NSCs
CD31*	Vascular
Collagen IV	Vascular
Claudin-5	Vascular
CD34	Vascular
PSD-95	Synaptic
Synaptophysin	Synaptic

Immune Profiling for Mouse FF

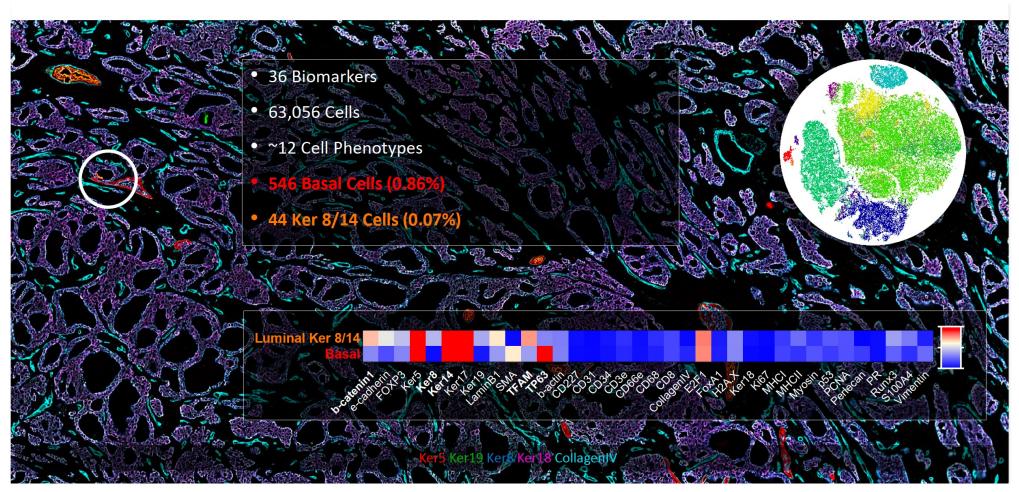
STEP Core Mouse FF Panel (25)

	HSCs, T cells, fibroblasts,
CD90*	vascular endothelial cells
CD31*	Vascular structures
TCR*	T cells
Terl19*	Erythrocytes
CD44*	Activated T cells
CD45*	Immune cells
CD19*	B-cells, FDCs
CD169*	Macrophages
CD45R/B220*	B cells
MHCII*	APCs
CD3*	T cells
IgM*	Immature B cells
CD5*	T cells
Ly6g*	Neutrophils
	NK cells, monocytes,
CD38*	activated B cells/T cells
CD21/35*	Mature B cells, FDCs
CD71*	Bone marrow blast cells
IgD*	Naïve B cells
CD4*	Helper T cells
CD11c*	Dendritic cells
CD24*	Dendritic cells
CD8a*	Cytotoxic T cells
CD49f*	Endothelial cells
CD11b*	Myeloid cells
Ki67*	Proliferating cells



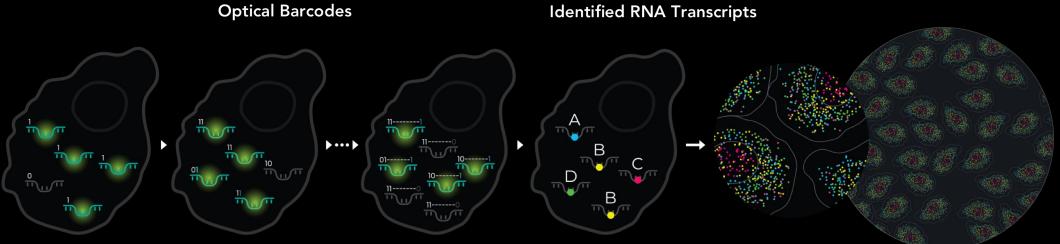
Tissue samples requirement/coverslip preparation

- FFPE or Fresh Frozen
- Coverslips (22mm x 22 mm, Akoyabio) coated with poly-L-lysine
- Tissue sectioning: 5-10 μm (FF 8-10 μm, FFPE 4-5 μm); up to 15mm x 15mm
- Tissues sectioned onto poly-L-lysine-coated coverslips can be stored for up to six months



From Images to Phenotypes to Neighborhoods

High-plex (up to 40+ biomarkers) whole-slide imaging at single-cell & sub-cellular resolution



Spatial Transcriptomics with Single cell and Subcellular Resolution

MERFISH Technology

Sample preparation guidelines

- Sample types:
 - Fresh Frozen: harvest, snap-freeze, cut (Fix in 4% PFA only 15' prior to permeabilization)
 - **Fixed Frozen**: harvest, fix 4%PFA 6-12h, 30% sucrose, snap-freeze, cut
 - FFPE coming soon!
 - Cell culture (adherent and suspension)
 - Maximum Size: 1cm³ for uniform freezing
 - Check RNA quality: RIN>7: Ideal; RIN 5-7: Detection Efficiency Diminishes; RIN<5: DO NOT Proceed

Cutting step:

- Fresh Frozen or Fixed Frozen tissue embedded in OCT
- RNAase Zap & 70% EtOH: Clean glass slides, cryostat area & brushes
- Equilibrate frozen tissue to -20 °C for at least 30 min
- Stage Angle: 5 degrees; Tissue Area:1cm²
- Cut 10 µm thick. When tissue is on coverglass, wait 5 seconds at least & then allow to refreeze
- You can warm coverglass (<70°C) to help tissue adhere better
- Store coverglass at -20 °C for 5 45 min, then permeabilize in EtOH.

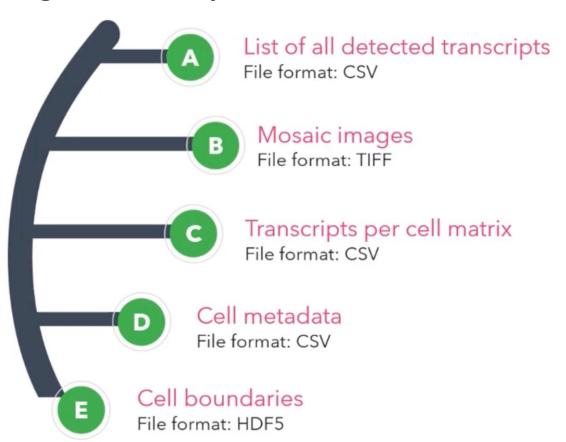
Cells or sectioned tissue

MERSCOPE Slide

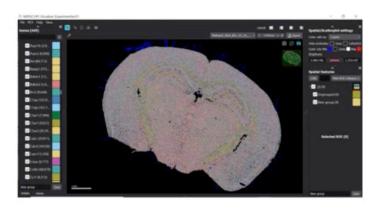
Some Special Cases

- Bone tissue:
 - Requires decalcification after fixation. RNA may be degraded, and adhesion is more difficult.
 - Add RNAse inhibitors to decalcification solution
 - Reduce sucrose to 10% to help with adhesion
- Fatty tissue:
 - Harder to cut, reduce cryostat temp to -17 (-18) degrees to help
 - Extend thawing time of tissue on coverglass before refreezing to help with adhesion
 - More resistant to tissue clearing so use the "resistant" option from the user manual
- Muscle tissue: Closely packed cells challenge cell segmentation accuracy
 - Syncytium, cell boundary staining may be required

MERSCOPE Sample Verification Kit to verify and optimize sample preparation conditions



Custom MERSCOPE Gene Panel Design Portal


A software tool for creating MERFISH gene panels to run on the MERSCOPE *in situ* spatial genomics platform. With the Portal you can customize your gene panels with real-time feedback about which genes are most suitable for a MERFISH measurement.

Vizgen Data output

MERSCOPE VizualizerTM

Data compatible with single-cell gene expression analysis software platforms



Bioinformatics

Our experienced bioinformaticians help with experimental design, developing reproducible workflows, analyzing high throughput next-generation sequencing data and spatial profiling data, and supporting manuscript development/publication. We generate visualizations of complex data and assist data uploads to public repositories.

Ruth and Tristram Colket Jr. Translational Research Building Rooms A450D 3501 Civic Center Blvd Philadelphia, PA 19104 267-425-4722

cscbcoreservices@chop.edu

Mei Zhang zhangm5@chop.edu

Kai Tan Director, CSCB; Professor of Pediatrics TANK1@chop.edu